The oxygenases are essential in the bioremediation of xenobiotic pollutants. To overcome cultivability constraints, this study aims to identify new potential extradiol dioxygenases using the functional metagenomics approach. RW1-4CC, a novel catechol 2,3-dioxygenase, was isolated using functional metagenomics approach, expressed in a heterologous system, and characterized thoroughly using state-of-the-art techniques. The serial truncation mutations of the C-terminal tail increase the catalytic efficiency of truncated proteins against the 2,3-dihydroxybiphenyl (2,3-DHB). RW1-4CC lose its 50% of activity at 60°C, with its optimum temperature at 15°C, whereas the truncated proteins were found to be more stable at extended temperature range, i.e., both RW1-4CC-A and RW1-4CC-B retained 50% of their activity at 75°C, with their temperature optima at 55°C and 65°C, respectively. The molecular docking studies further confirmed the high binding affinity of truncated proteins for the 2,3-DHB than catechol. The molecular modeling analysis revealed the difference in iron-binding and substrate interacting environment of RW1-4CC and its truncated proteins. The efficiency of purified RW1-4CC to detect catechol was evaluated using a gold screen-printed electrode by cyclic voltammetry. RW1-4CC detected catechol in wastewater and artificial seawater upto the concentration of 100 μm. was explored, which makes it reliable for catechol detection.
Keywords: Catechol 2,3-dioxygenase; biosensing; functional metagenomics; molecular modeling; substrate-specificity.
Copyright © 2024. Published by Elsevier Ltd.