This comprehensive review aims to explore and consolidate the current knowledge on dendrobine, including its biological activities, molecular mechanisms of action, effects on various physiological processes, potential toxicity, and safety considerations, in order to unlock its full potential in various applications. Dendrobine has diverse biological effects, including anti-inflammatory, antioxidant, neuroprotective, immunomodulatory, and anticancer effects. Dendrobine also exerts neuroprotective effects by boosting neuronal survival, reducing neuroinflammation, and regulating neurotransmitter release. Dendrobine also has immunomodulatory effects that control immune cell function and modify immunological responses. Dendrobine also exhibits anticancer properties by decreasing tumor angiogenesis and metastasis, causing apoptosis in cancer cells, and inhibiting cancer cell growth. This review also discusses the idea of a circular economy to produce dendrobine, researching cutting-edge and sustainable methods that maximize resource efficiency and reduce environmental effects. Additionally, by supporting circular economy principles for sustainable production and outlining potential future study areas, this discovery will help maximize the use of dendrobine in a variety of applications while preserving its safety and the environment. Future dendrobine research should focus on advancing its application in personalized medicine, exploring green bioproduction methods, and ensuring ethical sourcing practices. An enhanced understanding of its molecular mechanisms and the potential for synergistic therapies could revolutionize healthcare, whereas sustainable production methods and conservation efforts could safeguard its ecological impact.
Keywords: Bioproduction; biological activities; circular economy; dendrobine; dendrobium; molecular mechanisms; toxicity and safety.