C8 aromatic isomers, namely para-xylene (PX), meta-xylene (MX), ortho-xylene (OX), and ethylbenzene (EB), are essential industrial chemicals with a wide range of applications. The effective separation of these isomers is crucial across various sectors, including petrochemicals, pharmaceuticals, and polymer manufacturing. Traditional separation methods, such as distillation and solvent extraction, are energy-intensive. In contrast, selective adsorption has emerged as an efficient technique for separating C8 aromatic isomers, in which nanospace engineering offers promising strategies to address existing challenges by precisely tailoring the structures and properties of porous materials at the nanoscale. This review explores the application of nanospace engineering in modifying the pore structures and characteristics of diverse porous materials─including zeolites, metal-organic frameworks (MOFs), covalent organic frameworks (COFs), and other porous substances─to enhance their performance in C8 aromatic isomer separation. Additionally, this review provides a comprehensive summary of how different separation techniques, temperature fluctuations, enthalpy/entropy considerations, and desorption processes influence separation efficiency. It also presents a forward-looking perspective on remaining challenges and potential opportunities for advancing C8 aromatic isomer separation.
Keywords: C8 aromatic isomer separation; covalent organic frameworks; desorption processes; metal−organic frameworks; nanospace engineering; porous materials; selective adsorption; zeolites.