The development and homeostasis of intestinal epithelium are mediated by actively proliferating Lgr5+ stem cells, which possess a remarkable self-renewal and differentiation capacity. Recently, our study demonstrated that m6A methylation was essential for the survival of colonic stem cells. Here, we show that METTL3 expression is downregulated in the colon mucosa in ulcerative colitis (UC) patients and strongly associated with the differentiation and maturation of goblet cells during inflammation. In mice, depletion of Mettl3 significantly inhibits the self-renewal and differentiation of Lgr5+ stem cells, especially the differentiation and maturation of goblet cells, resulting in intestinal dysplasia and spontaneous inflammation. Mechanistically, Mettl3 deletion-mediated m6A loss facilitates the expression levels of Grb10 and Ifrd1 via increasing their mRNA stability. We further demonstrate that the levels of GRB10 and IFRD1 are negatively correlated with METTL3 level in UC samples. Collectively, our data indicate that METTL3 enhances the self-renewal and differentiation of Lgr5+ stem cells during intestinal development and inflammation, and thus it may be a potential therapeutic target for UC treatment.
Keywords: GRB10; IFRD1; Lgr5+ stem cell; METTL3; inflammation; intestinal development.
© The Author(s) 2025. Published by Oxford University Press on behalf of Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences.