Investigation of mechanical behavior of slag-stabilized rammed earth reinforced by carpet polyacrylic yarn waste

Sci Rep. 2025 Jan 6;15(1):979. doi: 10.1038/s41598-024-84722-4.

Abstract

This investigation addresses the reinforcement of rammed earth (RE) structures by integrating carpet polyacrylic yarn waste (CPYW) generated from the carpet production process and employing Ground Granulated Blast-Furnace Slag (GGBS) as a stabilizer, in conjunction with alkali activators potassium hydroxide (KOH), to enhance their mechanical properties. The study included conducting Unconfined Compressive Strength (UCS) tests and Brazilian Tensile Strength (BTS) tests on plain samples, GGBS-stabilized (SS) samples, CPYW-reinforced (CFS) samples, and samples reinforced with a combination of GGBS and CPYW (SCFS). The results showed that the mechanical and resistance properties of the CFS and SCFS samples were improved; these findings were confirmed by the presence of more cohesive GGBS gel and fibers as seen in FE-SEM and microscopic images. Therefore, the use of GGBS and CPYW, both separately and in combination, is suggested as a viable approach to enhance mechanical performance and reduce the brittle failure propensity of RE structures. This study achieved significant improvements in the mechanical behavior of RE structures by integrating CPYW and alkali-activated GGBS. Results showed a 370% improvement in UCS and a 638% increase in BTS than the plain sample. These enhancements demonstrate the potential for using industrial waste in eco-friendly, high-performance construction materials.

Keywords: Alkali-activated cement; Brazilian tensile strength; Carpet polyacrylic yarn waste; Image processing; Rammed-earth; Unconfined compression strength.