Pain therapies that alleviate both pain and sleep disturbances may be the most effective for pain relief, as both chronic pain and sleep loss render the opioidergic system, targeted by opioids, less sensitive and effective for analgesia. Therefore, we first studied the link between sleep disturbances and the activation of nociceptors in two acute pain models. Activation of nociceptors in both acute inflammatory (AIP) and opto-pain models led to sleep loss, decreased sleep spindle density, and increased sleep fragmentation that lasted 3 to 6 hours. This relationship is facilitated by the transmission of nociceptive signals through the spino-parabrachial pathways, converging at the wake-active PBelCGRP (parabrachial nucleus expressing Calcitonin Gene-Related Peptide) neurons, known to gate aversive stimuli. However, it has never been tested whether the targeted blocking of this wake pathway can alleviate pain-induced sleep disturbances without increasing sleepiness. Therefore, we next used selective ablations or optogenetic silencing and identified the key role played by the glutamatergic PBelCGRP in pain-induced sleep disturbances. Inactivating the PBelCGRP neurons by genetic deletion or optogenetic silencing prevented these sleep disturbances in both pain models. Furthermore, to understand the wake pathways underlying the pain-induced sleep disturbances, we silenced the PBelCGRP terminals at four key sites in the substantia innominata of the basal forebrain (SI-BF), the central nucleus of Amygdala (CeA), the bed nucleus of stria terminalis (BNST), or the lateral hypothalamus (LH). Silencing of the SI-BF and CeA also significantly reversed pain-induced sleep loss, specifically through the action on the CGRP and NMDA receptors. This was also confirmed by site-specific blockade of these receptors pharmacologically. Our results highlight the significant potential for selectively targeting the wake pathway to effectively treat pain and sleep disturbances, which will minimize risks associated with traditional analgesics.