Although tryptophan (Trp) is the largest and most structurally complex amino acid, it is the least abundant in the proteome. Its distinct indole ring and high carbon content enable it to generate various biologically active metabolites such as serotonin, kynurenine (Kyn), and indole-3-pyruvate (I3P). Dysregulation of Trp metabolism has been implicated in diseases ranging from depression to cancer. Investigating Trp and its metabolites in healthy tissues offers pathways to target disease-associated disruptions selectively, while preserving essential functions. In this study, we comprehensively mapped Trp metabolites across the Kyn, serotonin, and I3P pathways, as well as the microbiome-derived metabolite tryptamine, in C57BL/6 mice. Our comprehensive analysis covered 12 peripheral organs, the central nervous system, and serum in both male and female mice at three life stages: young (3 weeks), adult (54 weeks), and aged (74 weeks). We found significant tissue-, sex-, and age-specific variations in Trp metabolism, with notably higher levels of the oncometabolites I3P and Kyn in aging males. These findings emphasize the value of organ-specific analysis of Trp metabolism for understanding its role in disease progression and identifying targeted therapeutic opportunities.
Keywords: Trp; atlas; indole-3-pyruvate; kynurenine; metabolism; serotonin; tryptophan.