Guarding Drinking Water Safety against Harmful Algal Blooms: Could UV/Cl2 Treatment Be the Answer?

Environ Sci Technol. 2025 Jan 7. doi: 10.1021/acs.est.4c04255. Online ahead of print.

Abstract

Frequent and severe occurrences of harmful algal blooms increasingly threaten human health by the release of microcystins (MCs). Urgent attention is directed toward managing MCs, as evidenced by rising HAB-related do not drink/do not boil advisories due to unsafe MC levels in drinking water. UV/chlorine treatment, in which UV light is applied simultaneously with chlorine, showed early promise for effectively degrading MC-LR to values below the World Health Organization's guideline limits. Still, much is unknown regarding potential disinfection byproduct formation and associated toxicity, which can occur from the reaction of chlorine and other reactive species with MCs and algal and natural organic matter. To ensure UV/chlorine guarding drinking water for human consumption, the degradation and detoxification of four of the most problematic MC variants, namely, MC-LR, -RR, -YR, and -LA, which differ in amino acid substituents, were evaluated using UV/chlorine and compared to results from chlorination. Overall, UV/chlorine effectively enhanced MC degradation kinetics and generated less halogenated disinfection byproducts in the target analysis of 11 types of DBPs_C1-3 from 7 classes, total organic chlorine, and nontarget analysis revealing 35 higher molecular weight DBPs_C46-52, which maintained the MC structures. Reactivity and cytotoxicity changes varied based on the individual amino acid moieties within the cyclic heptapeptide structure common to all MCs. Analogous trends in MC reactivity were observed in degradation kinetics and mixed MC competition reactions, aligning with individual amino acid structure-reactivity. Cytotoxicity results indicated no significant unintended toxic consequences from MC_DBPs. Our results suggest that UV/chlorine treatment offers an efficient strategy for treating MCs in drinking water.

Keywords: UV/Cl2; cyanotoxins; freshwater salinization; molecular chlorine.