Multifractal dynamic changes of spontaneous brain activity in psychiatric disorders: Adult attention deficit-hyperactivity disorder, bipolar disorder, and schizophrenia

J Affect Disord. 2025 Jan 5:S0165-0327(25)00008-4. doi: 10.1016/j.jad.2025.01.007. Online ahead of print.

Abstract

It is one of the strategies to study the complexity of spontaneous fluctuation of brain neurons based on resting-state functional magnetic resonance imaging (rs-fMRI), but the multifractal characteristics of spontaneous fluctuation of brain neurons in psychiatric diseases need to be studied. Therefore, this paper will study the multifractal spontaneous brain activity changes in psychiatric disorders using the multifractal detrended fluctuation analysis algorithm based on the UCLA datasets. Specifically: (1) multifractal characteristics in adult attention deficit-hyperactivity disorder (ADHD), bipolar disorder (BP), and schizophrenia (SCHZ); (2) the source of those multifractal characteristics. Results showed that for adult ADHD, BP, and SCHZ, all 6 functional brain regions exhibit multifractal characteristics, and the multifractal spectrum shows a reduction in bell-shaped asymmetry, unlike the intensity of healthy control (HC) asymmetry. Besides, compared with HC, the multifractal sources of all functional brain regions were fat-tail probability distribution and the long-range dependence correlation, but the intensity of fat-tail probability distribution was decreased and the long-range dependence correlation was increased. The results provide a reference for further understanding the complexity of spontaneous fluctuation of neurons in psychiatric disorders.

Keywords: ADHD/BP/SCHZ; Multifractal; Network-level; rs-fMRI.