The gut microbiota is integral to the health and adaptability of wild herbivores. Interactions with soil microbiota can shape the composition and function of the gut microbiota, thereby influencing the hosts' adaptive strategies. As a result, soil microbiota plays a pivotal role in enabling wild herbivores to thrive in extreme environments. However, the influence of soil microbiota from distinct regions on host's gut microbiota has often been overlooked. We conducted the first comprehensive analysis of the composition and diversity of gut and soil microbiota in goitered gazelles across six regions in the Qaidam Basin, utilizing source tracking and ecological assembly process analyses. Significant differences were observed in the composition and diversity of soil and gut microbiota among the six groups. Source tracking analysis revealed that soil microbiota in the GangciGC (GC) group contributed the highest proportion to fecal microbiota (8.94%), while the Huaitoutala (HTTL) group contributed the lowest proportion (1.80%). The GC group also exhibited the lowest α-diversity in gut microbiota. The observed differences in gut microbial composition and diversity among goitered gazelles from six regions in the Qaidam Basin were closely tied to their adaptive strategies. Ecological assembly process analysis indicated that the gut microbiota were primarily influenced by stochastic processes, whereas deterministic processes dominated most soil microbial groups. Both the differences and commonalities in gut and soil microbiota play essential roles in enabling these gazelles to adapt to diverse environments. Notably, the utilization pattern of soil microbiota by gut microbiota did not align with regional trends in gut microbial α-diversity. This discrepancy may be attributed to variations in environmental pressures and the gut's filtering capacity, allowing gazelles to selectively acquire microbiota from soil to maintain homeostasis. This study highlights the significant regional variation in gut and soil microbiota diversity among goitered gazelle populations in the Qaidam Basin and underscores the critical role of soil-derived microbiota in their environmental adaptation.
Keywords: ecological assembly process; goitered gazelles; soil-derived microorganism; source tracking analysis.