Federated Learning in Smart Healthcare: A Comprehensive Review on Privacy, Security, and Predictive Analytics with IoT Integration

Healthcare (Basel). 2024 Dec 22;12(24):2587. doi: 10.3390/healthcare12242587.

Abstract

Federated learning (FL) is revolutionizing healthcare by enabling collaborative machine learning across institutions while preserving patient privacy and meeting regulatory standards. This review delves into FL's applications within smart health systems, particularly its integration with IoT devices, wearables, and remote monitoring, which empower real-time, decentralized data processing for predictive analytics and personalized care. It addresses key challenges, including security risks like adversarial attacks, data poisoning, and model inversion. Additionally, it covers issues related to data heterogeneity, scalability, and system interoperability. Alongside these, the review highlights emerging privacy-preserving solutions, such as differential privacy and secure multiparty computation, as critical to overcoming FL's limitations. Successfully addressing these hurdles is essential for enhancing FL's efficiency, accuracy, and broader adoption in healthcare. Ultimately, FL offers transformative potential for secure, data-driven healthcare systems, promising improved patient outcomes, operational efficiency, and data sovereignty across the healthcare ecosystem.

Keywords: Internet of Things; artificial intelligence; big data; deep learning; healthcare; machine learning.

Publication types

  • Review

Grants and funding

This research was supported by the SungKyunKwan University and the BK21 FOUR (Graduate School Innovation) funded by the Ministry of Education (MOE, Korea) and National Research Foundation of Korea (NRF). This work was also supported by National Research Foundation (NRF) grants funded by the Ministry of Science and ICT (MSIT) and Ministry of Education (MOE), Republic of Korea (NRF[2021-R1-I1A2(059735)]; RS[2024-0040(5650)]; RS[2024-0044(0881)]; RS[2019- II19(0421)]).