An Intelligent Approach for Early and Accurate Predication of Cardiac Disease Using Hybrid Artificial Intelligence Techniques

Bioengineering (Basel). 2024 Dec 19;11(12):1290. doi: 10.3390/bioengineering11121290.

Abstract

This study proposes a new hybrid machine learning (ML) model for the early and accurate diagnosis of heart disease. The proposed model is a combination of two powerful ensemble ML models, namely ExtraTreeClassifier (ETC) and XGBoost (XGB), resulting in a hybrid model named ETCXGB. At first, all the features of the utilized heart disease dataset were given as input to the ETC model, which processed it by extracting the predicted probabilities and produced an output. The output of the ETC model was then added to the original feature space by producing an enriched feature matrix, which is then used as input for the XGB model. The new feature matrix is used for training the XGB model, which produces the final result that whether a person has cardiac disease or not, resulting in a high diagnosis accuracy for cardiac disease. In addition to the proposed model, three other hybrid DL models, such as convolutional neural network + recurrent neural network (CNN-RNN), convolutional neural network + long short-term memory (CNN-LSTM), and convolutional neural network + bidirectional long short-term memory (CNN-BLSTM), were also investigated. The proposed ETCXGB model improved the prediction accuracy by 3.91%, while CNN-RNN, CNN-LSTM, and CNN-BLSTM enhanced the prediction accuracy by 1.95%, 2.44%, and 2.45%, respectively, for the diagnosis of cardiac disease. The simulation outcomes illustrate that the proposed ETCXGB hybrid ML outperformed the classical ML and DL models in terms of all performance measures. Therefore, using the proposed hybrid ML model for the diagnosis of cardiac disease will help the medical practitioner make an accurate diagnosis of the disease and will help the healthcare society decrease the mortality rate caused by cardiac disease.

Keywords: cardiac disease; cardiac disease prediction; disease prediction; hybrid deep learning approaches; hybrid machine learning techniques.