This study analyzed the effects of an 8-week diaphragmatic core training program on postural stability during high-intensity squats and examined its efficacy in injury prevention and performance enhancement. Thirty-seven male participants were randomly assigned to three groups: diaphragmatic core training group (DCTG, n = 12), core training group (CTG, n = 13), and control group (CG, n = 12). Outcome measurements included diaphragm thickness, respiratory function (mean and maximal respiratory pressures), and squat postural stability (distance between the sacral and upper body center points, peak trunk extension moment, peak knee flexion moment, and dynamic postural stability index). Compared to both CTG and CG, DCTG demonstrated significantly greater improvements in diaphragm thickness (DCTG: 34.62% increase vs. CTG: 1.36% and CG: 3.62%, p < 0.001), mean respiratory pressure (DCTG: 18.88% vs. CTG: 1.31% and CG: 0.02%, p < 0.001), and maximal respiratory pressure (DCTG: 18.62% vs. CTG: 0.72% and CG: 1.90%, p < 0.001). DCTG also showed superior improvements in postural stability measures, including reductions in the distance between sacral and upper body center points (DCTG: -6.19% vs. CTG: -3.26% and CG: +4.55%, p < 0.05), peak trunk extension moment (DCTG: -15.22% vs. CTG: -5.29% and CG: +19.31%, p < 0.001), and dynamic postural stability index (DCTG: -28.13% vs. CTG: -21.43% and CG: no change, p < 0.001). No significant between-group differences were observed in peak knee flexion moment. Core training incorporating diaphragmatic strengthening was more effective than conventional training in improving postural stability during high-intensity squats. Core training programs, including diaphragmatic strengthening exercises, may contribute to injury prevention and performance enhancement in exercises requiring lumbar stability, such as squats.
Keywords: core training; diaphragm; injury prevention; postural stability; squat.