A comprehensive genome-wide identification of SET-domain-containing genes in Solanum lycopersicum (tomato) has revealed 46 members. Phylogenetic analysis showed that these SET genes, along with those from Arabidopsis thaliana and Oryza sativa, are divided into five subfamilies, with Subfamilies II and V being the largest. Motif and domain analyses identified 15 conserved motifs and revealed the presence of pre-SET and post-SET domains in several genes, suggesting functional diversification. Gene structure analysis further demonstrated variation in exon-intron organization, likely contributing to differential gene regulation. Promoter analysis identified cis-acting elements related to light responsiveness, plant growth, hormones, and stress, implicating SET genes in various biological processes. RNA-seq and qRT-PCR data revealed distinct expression patterns of SlSET genes under salt stress, with several genes showing significant upregulation, indicating their potential role in stress tolerance. In particular, SlSET6 silencing using VIGS reduced tomato's tolerance to salt stress, leading to higher lipid peroxidation, reduced antioxidant enzyme activity, and decreased proline content, further confirming its critical role in salt stress response. These findings provide valuable insights into the functional diversity, evolutionary history, and stress-related roles of SET domain genes in tomato, with potential applications for crop improvement strategies.
Keywords: ROS; SET; gene family; salt stress; tomato.