Inhibition of TFAM-Mediated Mitophagy by Oroxylin A Restored Sorafenib Sensitivity Under Hypoxia Conditions in HepG2 Cells

Pharmaceuticals (Basel). 2024 Dec 20;17(12):1727. doi: 10.3390/ph17121727.

Abstract

Background: Liver cancer treatment encounters considerable therapeutic challenges, especially because hypoxic microenvironments markedly reduce sensitivity to chemotherapeutic agents. TFAM (mitochondrial transcription factor A) plays a crucial role in maintaining mitochondrial function. Oroxylin A (OA), a flavonoid with potential therapeutic properties, demonstrated prospects in cancer treatment. However, the mechanism of the sensitizing effect of OA on cancer cells has not been elucidated. Methods: MTT assays were utilized to evaluate a hypoxia-induced resistance model. Plate colony formation assays, TEM, and JC-1 staining were used to examine the effects of siTFAM on proliferation and mitochondrial damage of HepG2 cells. Cox8-EGFP-mCherry plasmid transfection, LysoTracker and MitoTracker colocalization analysis, and WB were conducted to evaluate the influence of OA on mitophagy. The effect of OA on p53 ubiquitination levels was investigated by Co-IP and the CHX chase assay. A mouse xenograft tumor model was utilized to assess the therapeutic effect of OA on HepG2 cells in vivo. Results: OA significantly improved the inhibitory effect of sorafenib by inhibiting mitophagy on HepG2 cells in in vitro and in vivo models. Notably, the molecular docking and thermal shift assays indicated a clear binding of OA and TFAM. Further research revealed that OA suppressed p53 acetylation and promoted its degradation by downregulating TFAM expression, which ultimately inhibited mitophagy in hypoxia. Conclusions: OA has demonstrated the potential to enhance the efficacy of sorafenib treatment for liver cancer, and TFAM may be one of its targets.

Keywords: Oroxylin A; TFAM; hypoxia; p53; sensitivity.