Background/objectives: Thus far, no studies have examined the relationship between fruit and vegetable (F and V) intake, urinary metabolite quantities, and weight change. Therefore, the aim of the current study was to explore changes in urinary metabolomic profiles during and after a 10-week weight loss intervention where participants were prescribed a high F and V diet (7 servings daily).
Methods: Adults with overweight and obesity (n = 34) received medical nutrition therapy counselling to increase their F and V intakes to national targets (7 servings a day). Data collection included weight, dietary intake, and urine samples at baseline at week 2 and week 10. Urinary metabolite profiles were quantified using 1H NMR spectroscopy. Machine learning statistical approaches were employed to identify novel urine-based metabolite biomarkers associated with high F and V diet patterns at weeks 2 and 10. Metabolic changes appearing in urine in response to diet were quantified using Metabolite Set Enrichment Analysis (MSEA).
Results: Energy intake was significantly lower (p = 0.02) at week 10 compared with baseline. Total F and V intake was significantly higher at week 2 and week 10 (p < 0.05). In total, 123 urinary metabolites were quantified. At week 10, 21 metabolites showed significant changes relative to baseline. Of these, 11 metabolites also significantly changed at week 2. These overlapping metabolites were acetic acid, dimethylamine, choline, fumaric acid, glutamic acid, L-tyrosine, histidine, succinic acid, uracil, histamine, and 2-hydroxyglutarate. Ridge Classifier and Linear Discriminant Analysis provided best prediction accuracy values of 0.96 when metabolite level of baseline was compared to week 10.
Conclusions: Urinary metabolites quantified represent potential candidate biomarkers of high F and V intake, associated with a reduction in energy intake. Further studies are needed to validate these findings in larger population studies.
Keywords: fruit and vegetables; metabolomics; urinary metabolites; weight loss.