Late blight is a destructive disease affecting tomato production. The identification and characterization of resistance (R) genes are critical for the breeding of late blight-resistant cultivars. The incompletely dominant gene Ph-2 confers resistance against the race T1 of Phytophthora infestans in tomatoes. Herein, we identified Solyc10g085460 (RGA1) as a candidate gene for Ph-2 through the analysis of sequences and post-inoculation expression levels of genes located within the fine mapping interval. The RGA1 was subsequently validated to be a Ph-2 gene through targeted knockout and complementation analyses. It encodes a CC-NBS-LRR disease resistance protein, and transient expression assays conducted in the leaves of Nicotiana benthamiana indicate that Ph-2 is predominantly localized within the nucleus. In comparison to its susceptible allele (ph-2), the transient expression of Ph-2 can elicit hypersensitive responses (HR) in N. benthamiana, and subsequent investigations indicate that the structural integrity of the Ph-2 protein is likely a requirement for inducing HR in this species. Furthermore, ethylene and salicylic acid hormonal signaling pathways may mediate the transmission of the Ph-2 resistance signal, with PR1- and HR-related genes potentially involved in the Ph-2-mediated resistance. Our results could provide a theoretical foundation for the molecular breeding of tomato varieties resistant to late blight and offer valuable insights into elucidating the interaction mechanism between tomatoes and P. infestans.
Keywords: Ph-2; candidate gene; hypersensitive responses; late blight; tomato.