Plant height represents a pivotal agronomic trait for the genetic enhancement of crops. The plant cell wall, being a dynamic entity, is crucial in determining plant stature; however, the regulatory mechanisms underlying cell wall remodeling remain inadequately elucidated. This study demonstrates that the application of gibberellin 3 (GA3) enhances both plant height and cell wall remodeling in tomato (Solanum lycopersicum L.) plants. RNA sequencing (RNA-seq) results of GA3 treatment showed that the DEGs were mostly enriched for cell wall-related pathways; specifically, GA3 treatment elicited the expression of the cell wall-associated gene XYLOGLUCAN ENDOTRANSGLUCOSYLASE/HYDROLASE 19 (SlXTH19), whose overexpression resulted in increased plant height. Comparative analyses revealed that SlXTH19-overexpressing lines exhibited larger cell dimensions and increased XTH activity, along with higher contents of lignin, cellulose, and hemicellulose, thereby underscoring the gene's role in maintaining cell wall integrity. Conversely, treatments with ethephon (ETH) and 1-Naphthaleneacetic acid (NAA) led to suppressed plant height and reduced SlXTH19 expression. Collectively, these findings illuminate a competitive interplay between GA and ethylene/auxin signaling pathways in regulating cell wall remodeling via SlXTH19 activation, ultimately influencing tomato plant height.
Keywords: GA; SlXTH19; cell wall; plant height; tomato.