Ultra-High Sensitivity Methane Gas Sensor Based on Cryptophane-A Thin Film Depositing in Double D-Shaped Photonic Crystal Fiber Using the Vernier Effect

Sensors (Basel). 2024 Dec 19;24(24):8132. doi: 10.3390/s24248132.

Abstract

Methane gas leakage can lead to pollution problems, such as rising ambient temperature. In this paper, the Vernier effect of a double D-shaped photonic crystal fiber (PCF) in a Sagnac interferometer (SI) is proposed for the accurate detection of mixed methane gas content in the gas. The optical fiber structure of the effective sensing in the sensing SI loop and the effective sensing in the reference SI loop are the same. Both of them adopt the polarization-maintaining photonic crystal fiber (PM-PCF) designed in this paper. The optical fiber structure of the effective sensing in the sensing SI loop deposited with the methane gas-sensitive film is polished to obtain a double-D structure. This operation makes it easier for methane gas to contact the sensitive film and realize the sensor's repeated use. The sensing capability of the methane gas sensor was evaluated utilizing the finite element method (FEM). The numerical simulation results show that when the concentration of methane gas in the environment is 0~3.5%, the average sensitivity of two parallel Sagnac loops is 409.43 nm/%. Using Vernier effect cascade SI loops, the sensitivity of the sensor for detecting methane gas increased by four times. Without considering air and humidity, we provide a practical scheme for the development and design of high-sensitivity methane gas sensors.

Keywords: D-shaped photonic crystal fiber; Sagnac interferometer; Vernier effect; gas sensor.