Wavelet-Driven Multi-Band Feature Fusion for RGB-T Salient Object Detection

Sensors (Basel). 2024 Dec 20;24(24):8159. doi: 10.3390/s24248159.

Abstract

RGB-T salient object detection (SOD) has received considerable attention in the field of computer vision. Although existing methods have achieved notable detection performance in certain scenarios, challenges remain. Many methods fail to fully utilize high-frequency and low-frequency features during information interaction among different scale features, limiting detection performance. To address this issue, we propose a method for RGB-T salient object detection that enhances performance through wavelet transform and channel-wise attention fusion. Through feature differentiation, we effectively extract spatial characteristics of the target, enhancing the detection capability for global context and fine-grained details. First, input features are passed through the channel-wise criss-cross module (CCM) for cross-modal information fusion, adaptively adjusting the importance of features to generate rich fusion information. Subsequently, the multi-scale fusion information is input into the feature selection wavelet transforme module (FSW), which selects beneficial low-frequency and high-frequency features to improve feature aggregation performance and achieves higher segmentation accuracy through long-distance connections. Extensive experiments demonstrate that our method outperforms 22 state-of-the-art methods.

Keywords: RGB-T; convolutional neural networks; cross-modal fusion; salient object detection.