Combating multidrug-resistant Acinetobacter baumannii is considered a priority by the World Health Organization. Virulence mechanisms, such as biofilm formation, multidrug resistance, and high adherence to both biotic and abiotic surfaces, underscore the urgency of exploring approaches to control this pathogen. The search for new antibiotic compounds and alternative strategies like immunotherapies and vaccination offers potential solutions to address this pressing health concern. In this context, adhesins play a crucial role in the pathogenicity and virulence of A. baumannii, making them potential targets for therapeutic interventions. To address this, we conducted a systematic review of A. baumannii adhesin research from the last decade (2013-2023). We reviewed 24 papers: 6 utilizing reverse vaccinology bioinformatic tools to predict adhesin targets for vaccine construction, 17 employing DNA recombinant techniques for in vivo active and passive immunization or in vitro antibody-mediated therapy assays, and 1 paper exploring the impact of pyrogallol therapy on A. baumannii virulence mechanisms. Our review identified over 20 potential targets with significant findings. We screened and summarized these targets to aid in further exploration of therapies and prevention.
Keywords: adhesion targets; bacterial adhesion; biofilm; immunization; immunotherapy; vaccine.