Neuronal CD59 isoforms IRIS-1 and IRIS-2 as regulators of neurotransmitter release with implications for Alzheimer's disease

Alzheimers Res Ther. 2025 Jan 7;17(1):11. doi: 10.1186/s13195-024-01660-z.

Abstract

We have previously demonstrated that the intracellular, non-GPI anchored CD59 isoforms IRIS-1 and IRIS-2 (Isoforms Rescuing Insulin Secretion 1 and 2) are necessary for insulin secretion from pancreatic β-cells. While investigating their expression across human tissues, we identified IRIS-1 and IRIS-2 mRNA in the human brain, though their protein expression and function remained unclear. This study shows the presence of both IRIS-1 and 2 proteins in the human brain, specifically in neurons and astrocytes. In the neuroblastoma cell line (SH-SY5Y), both isoforms are intracellular, and their expression increases upon differentiation into mature neurons. Silencing IRIS-1 and 2 in SH-SY5Y cells reduces the SNARE complex formation, essential for synaptic vesicle exocytosis, leading to a reduction in noradrenaline secretion. Notably, we observed diminished expression of neuronal IRIS-1 and 2 in patients with Alzheimer's disease (AD) and non-demented individuals with type 2 diabetes (T2D). In SH-SY5Y cells, knockdown of all isoforms of CD59 including IRIS-1 and 2 not only elevates phosphorylated tau but also increases cyclin-dependent kinase 5 (CDK5) expression, known promoter of hyperphosphorylation and accumulation of tau, a key pathological feature of AD. Additionally, we found that prolonged exposure to high glucose or cytokines markedly reduces the expression of IRIS-1 and 2 in SH-SY5Y cells, suggesting a link between AD pathology and metabolic stress through modulation of these isoforms.

Keywords: Alzheimer’s disease; CD59; IRIS-1; IRIS-2; Intracellular complement; Neurotransmitters release; SNARE; Tau hyperphosphorylation; Type 2 diabetes.

MeSH terms

  • Aged
  • Alzheimer Disease* / genetics
  • Alzheimer Disease* / metabolism
  • Astrocytes / metabolism
  • Brain / metabolism
  • CD59 Antigens* / genetics
  • CD59 Antigens* / metabolism
  • Cell Line, Tumor
  • Diabetes Mellitus, Type 2 / metabolism
  • Female
  • Humans
  • Male
  • Neurons* / metabolism
  • Neurotransmitter Agents / metabolism
  • Protein Isoforms* / metabolism

Substances

  • Protein Isoforms
  • CD59 Antigens
  • CD59 protein, human
  • Neurotransmitter Agents