In digital image diagnosis using medical displays, it is crucial to rigorously manage display devices to ensure appropriate image quality and diagnostic safety. The aim of this study was to develop a model for the efficient quality control (QC) of medical displays, specifically addressing the measurement items of contrast response and maximum luminance as part of constancy testing, and to evaluate its performance. In addition, the study focused on whether these tasks could be addressed using a multitasking strategy. Methods: The model used in this study was constructed by fine-tuning a pretrained model and expanding it to a multioutput configuration that could perform both contrast response classification and maximum luminance regression. QC images displayed on a medical display were captured using a smartphone, and these images served as the input for the model. The performance was evaluated using the area under the receiver operating characteristic curve (AUC) for the classification task. For the regression task, correlation coefficients and Bland-Altman analysis were applied. We investigated the impact of different architectures and verified the performance of multi-task models against single-task models as a baseline. Results: Overall, the classification task achieved a high AUC of approximately 0.9. The correlation coefficients for the regression tasks ranged between 0.6 and 0.7 on average. Although the model tended to underestimate the maximum luminance values, the error margin was consistently within 5% for all conditions. Conclusion: These results demonstrate the feasibility of implementing an efficient QC system for medical displays and the usefulness of a multitask-based method. Thus, this study provides valuable insights into the potential to reduce the workload associated with medical-device management the development of QC systems for medical devices, highlighting the importance of future efforts to improve their accuracy and applicability.
Keywords: constancy testing; deep learning; medical display; multi-task model; quality control.
© 2025 IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved.