The water quality and resources of Lake Ontario's nearshore ecosystem undergo heightened stress, particularly along the northwest shoreline. Hydrodynamic processes linking the distinct nearshore and offshore trophic structures play a crucial role in transporting nutrient-loaded water along and across the shore. Despite the pivotal connection between algae growth and the development of nuisance proportions, the scales over which these processes operate remain poorly understood. This study delves into the exchange dynamics between nearshore and offshore areas of Lake Ontario throughout 2018, employing a validated three-dimensional numerical model. A virtual passive age tracer is utilized to discern horizontal mixing time scales between nearshore regions of the lake (water depth < 30 m) and offshore locations. The dispersal pattern, as revealed by a passive tracer released from eight points around the model lake's perimeter, indicates more extensive diffusion in late summer when lake-wide stratification is established, compared to the mixed period. Coastal upwelling events, leading to intrusions of hypolimnetic waters, significantly contribute to net cross-shore transport, with the most pronounced effects observed in May and June when the offshore thermocline is shallow. In the northern part of the lake, dispersal predominantly occurs alongshore, mirroring the prevailing cyclonic (counterclockwise) coastal circulation during the stratified season. This pattern is a consequence of a 45% increase in upwelling events compared to three decades ago. In the northwestern and southern sectors of the lake, elevated cross-shore mixing is attributed to geomorphology-induced cross-basin currents.
Copyright: © 2025 Hlevca et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.