Induced cell phenotype activity recording of DNA-tagged ligands

RSC Chem Biol. 2024 Dec 17. doi: 10.1039/d4cb00137k. Online ahead of print.

Abstract

Based on their ability to canvas vast genetic or chemical space at low cost and high speed, DNA-encoded libraries (DEL) have served to enable both genomic and small molecule discovery. Current DEL chemical library screening approaches focus primarily on in vitro target-based affinity or activity. Here we describe an approach to record the phenotype-based activity of DNA-encoded small molecules on their cognate barcode in living cells. We transfected chloroalkane-derivatized DNA barcodes carrying photoreleasable small molecules into cells. Following photorelease, bioactive compounds induced expression of a reporter gene cassette containing self-labeling HaloTag protein that becomes covalently modified by encoding barcodes. We demonstrate that we can recover activity information from cells that received active compound following immunoprecipitation-based enrichment. This generalizable approach should enable future strategies that facilitate phenotype-based screens of DNA-encoded chemical libraries in complex cellular or organism level systems.