Long-standing challenges including notorious side reactions at the Zn anode, low Zn anode utilization, and rapid cathode degradation at low current densities hinder the advancement of aqueous zinc-ion batteries (AZIBs). Inspired by the critical role of capping agents in nanomaterials synthesis and bulk crystal growth, a series of capping agents are employed to demonstrate their applicability in AZIBs. Here, it is shown that the preferential adsorption of capping agents on different Zn crystal planes, coordination between capping agents and Zn2+ ions, and interactions with metal oxide cathodes enable preferred Zn (002) deposition, water-deficient Zn2+ ion solvation structure, and a dynamic cathode-electrolyte interface. Benefiting from the multi-functional role of capping agents, dendrite-free Zn plating and stripping with an improved Coulombic efficiency of 99.2% and enhanced long-term cycling stability are realized. Remarkable capacity retention of 91% is achieved for cathodes after more than 500 cycles under a low current density of 200 mA g-1, marking one of the best cycling stabilities to date. This work provides a proof-of-concept of capping agents in manipulating electrochemical behaviors, which should inspire and pave a new avenue of research to address the challenges in practical energy storage beyond AZIBs.
Keywords: aqueous zinc‐ion battery; capping agents; crystallographic orientation manipulation; electrode‐electrolyte interface; solvation structure.
© 2025 The Author(s). Advanced Materials published by Wiley‐VCH GmbH.