Spatiotemporal evolution and driving forces of landscape structure and habitat quality in river corridors with ceased flow: A case study of the Yongding River corridor in Beijing, China

J Environ Manage. 2025 Jan 6:374:123861. doi: 10.1016/j.jenvman.2024.123861. Online ahead of print.

Abstract

Flow cessation leads to severe degradation of river corridor landscape structure, habitat quality, and ecological functions. This study focuses on the representative river with ceased flow in northern China, the Yongding River plain section. Utilizing long-term, high-resolution satellite remote sensing imagery and the InVEST model, we analyzed the spatiotemporal evolution of landscape structure and habitat quality (HQ) before and after river corridor flow cessation over the past 50 years. The study further employs partial least squares regression (PLSR) to explore the impact of landscape structural changes on HQ and uses generalized additive models (GAMs) and geographical detector (GeoDetector) to quantitatively identify key factors affecting habitat degradation and their interactive effects. Results indicate that from 1967 to 2018, mid-channel bar, floodplain, and waterbody decreased sharply from 37.4% to 3.8%. The mean HQ value dropped from 0.58 to 0.34 after flow cessation. Although HQ slightly recovered post-2004, high-quality habitat areas remain absent. Different landscape structures significantly influence HQ, with increased size and area of the waterbody and forest patches positively contributing, while cultivated land, barren land, and built-up land generally have negative impacts. PLAND, LPI, MPS, and AWMPFD are key metrics for optimizing landscape structure and implementing habitat restoration in river management. Anthropogenic activities emerged as the primary driver of river corridor habitat degradation post-flow cessation. Different drivers exhibit complex linear and nonlinear effects on HQ. Based on these findings, we propose ecological management strategies for river corridors with ceased flow. This study is essential for a deeper understanding of river corridors' structural dynamics and degradation mechanisms, providing a scientific basis for effective ecological restoration and management.

Keywords: Ecological degradation; Ecosystem management; Landscape metrics; Landscape structure; River corridor.