Ammonia sensors are widely used across applications in food monitoring, environmental surveillance, and medical research, where high safety standards are essential. Cellulose-based materials are particularly well-suited to meet these stringent requirements, with significant potential for innovation due to their biodegradability and biocompatibility. Of the various cellulose-based ammonia sensors available, self-powered sensors, especially those based on triboelectric nanogenerators (TENGs), stand out for their unique advantages, including the absence of an external power supply, environmental sustainability, and ease of integration. This review offers a detailed overview of the integration of cellulose-based materials with ammonia-sensitive components, highlighting their ease of processing and modification. It further classifies and compares cellulose-based ammonia sensors based on their sensing mechanisms, emphasizing TENG-based sensors specifically. The review concludes with a summary of current applications and explores optimization strategies. Finally, it discusses future opportunities and challenges for cellulose-based self-powered ammonia sensors and provides valuable insights into ongoing innovation and potential.
Keywords: Ammonia; Cellulose; Sensor; Triboelectric nanogenerators.
Copyright © 2024 Elsevier Ltd. All rights reserved.