Synergistic and antagonistic relationships between cytokinins and other plant growth regulators are important in response to changing environmental conditions. Our study aimed to determine the functions of SlHP2 and SlHP3, two members of cytokinin signaling in tomato, in drought stress response using CRISPR/Cas9-mediated mutagenesis. Ten distinct genome-edited lines were generated via Agrobacterium tumefaciens-mediated gene transfer and confirmed through Sanger sequencing. Stress experiments were conducted with two of these lines (slhp2,3-10 and slhp2,3-11), which harbored homozygous mutations in both genes. The responses of two lines carrying homozygous mutations in both genes under polyethylene glycol (PEG)-induced stress were examined using morphological, physiological, biochemical, and molecular methods. The genome-edited lines demonstrated enhanced water retention, reduced stomatal density, and less oxidative damage compared to the wild-type plants under PEG-induced stress. Moreover, the slhp2,3 double mutant plants exhibited improved root growth, showcasing their superior drought tolerance over wild-type plants by accessing deeper water sources and maintaining hydration in water-limited environments. To investigate the involvement of cytokinin signaling regulators and genes associated with stomatal formation and differentiation, the expression of genes (Speechless [SPCH], FAMA, MUTE, TMM, HB25, HB31, RR6, RR7, and Solyc02g080860) was assessed. The results revealed that all regulators were downregulated, with SPCH, TMM, RR7, and RR6 showing significant reductions under PEG-induced stress. These results emphasize the promise of utilizing CRISPR/Cas9 to target cytokinin signaling pathways, enhancing drought tolerance in tomatoes through improvements in water retention and root growth, along with a reduction in stomatal density and malondialdehyde content.
© 2025 The Author(s). The Plant Genome published by Wiley Periodicals LLC on behalf of Crop Science Society of America.