Thermoelectrochemical Method for Quantification of the Micellization Entropy of Redox-Active Polymers

ACS Macro Lett. 2025 Jan 9:107-113. doi: 10.1021/acsmacrolett.4c00773. Online ahead of print.

Abstract

Redox-active micelles undergo reversible association and dissociation in response to their redox potential and are promising materials for various applications, such as drug delivery and bioimaging. Evaluation of the micellization entropy is critical in controlling the thermodynamics of micelle formation. However, conventional methods such as isothermal titration calorimetry and surface tensiometry require a long measurement time to observe changes in the heat flow or the surface tension caused by the micellization. Here we report a thermoelectrochemical method to quantify the entropy change produced by redox-active micelles. A set of poly(ethyl glycidyl ether-b-ethylene oxide)phenothiazine (PT-EGE-EO) with varied chain length were synthesized, and their micellization entropy was calculated from the temperature-dependent changes of the equilibrium potential. This thermoelectrochemical method enables a quick evaluation of the micellization entropy with only a single sample preparation and temperature sweep. The obtained results showed a reasonable agreement with the conventional surface tensiometry and isothermal titration calorimetry, indicating that the thermoelectrochemical method is a promising alternative for quantification of the micellization entropy.