The molecular energy transfer is crucial for many different physicochemical processes. The efficiency of traditional resonance energy transfer relies on dipole-dipole distance between molecules and becomes negligible when the distance is larger than ∼10 nm, which is difficult to overcome. Cavity polariton, formed when placing molecules inside the cavity, is a promising way to surmount the distance limit. By hybridizing a two-level atom (TLA) and a lithium fluoride (LiF) molecule with a cavity, we numerically simulate the reaction process and the energy transfer between them. Our results show that the TLA can induce a deep potential well, which can be seen as a replica of the potential energy surface of bare LiF, acting as a reservoir to absorb/release the molecular kinetic energy. In addition, the energy transfer shows a molecular nuclear kinetic energy dependent behavior, namely, more nuclear kinetic energy igniting more energy transfer. These findings show us a promising way to manipulate the energy transfer process within the cavity using an intentional TLA, which can also serve as a knob to control the reaction process.
© 2024 Author(s). Published under an exclusive license by AIP Publishing.