Background: Acute heart failure (AHF) poses significant diagnostic challenges in the emergency room (ER) because of its varied clinical presentation and limitations of traditional diagnostic methods. This study aimed to develop and evaluate a deep-learning model using electrocardiogram (ECG) data to enhance AHF identification in the ER.
Methods: In this retrospective cohort study, we analyzed the ECG data of 19,285 patients who visited ERs of three hospitals between 2016 and 2020; 9,119 with available left ventricular ejection fraction and N-terminal prohormone of brain natriuretic peptide level data and who were diagnosed with AHF were included in the study. We extracted morphological and clinical parameters from ECG data to train and validate four machine learning models: baseline linear regression and more advanced models including XGBoost, Light GBM, and CatBoost.
Results: The CatBoost algorithm outperformed other models, showing superior area under the receiver operating characteristic and area under the precision-recall curve diagnostic accuracy across both internal (0.89 ± 0.01 and 0.89 ± 0.01) and external (0.90 and 0.89) validation datasets, respectively. The model demonstrated high accuracy, precision, recall, and f1 score, indicating robust performance in AHF identification.
Conclusion: The developed machine learning model significantly enhanced AHF detection in the ER using conventional 12-lead ECGs combined with clinical data. These findings suggest that ECGs, a common tool in the ER, can effectively help screen for AHF.
Keywords: Acute Heart Failure; Electrocardiogram; Emergency Room; Machine learning; Prediction.
© The Author(s) 2025. Published by Oxford University Press on behalf of the European Society of Cardiology. All rights reserved. For commercial re-use, please contact [email protected] for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact [email protected].