Cesarean section (CS) is highly prevalent surgery among females. However, current absorbable anti-adhesion membranes used clinically can partially prevent postoperative adhesions but show limited efficacy in tissue regeneration, leaving post-cesarean women at risk for severe complications including cesarean scar pregnancy, placenta previa, and uterine rupture. Herein, we designed a fully amniotic membrane (AM)-derived biomimetic nanostructural materials (AM-BNMs) as an anti-adhesion barrier, and validated its therapeutic efficacy in a rat CS model. The biomaterial consisted of AM-extracellular matrix (ECM) nanofibers, enriched with hemostatic proteins (collagen, S100A8, S100A9, etc.), carrying AM mesenchymal stem cells (MSCs)-secretome that exhibited significantly elevated levels of pro-regenerative factors (miR-302a-3p, angiogenin, VEGF, etc.) compared to endogenous secretion. The reconstituted AM-BNMs demonstrated synergistic effects at CS wounds, effectively preventing adhesion formation while promoting hemostasis and tissue regeneration. In summary, this readily accessible human-derived biomaterial shows promising potential in preventing adhesion-related complications and enhancing uterine wound healing, thereby promoting female reproductive health.
Keywords: Amniotic membrane; Cesarean section; Extracellular matrix; Mesenchymal stem cells; Nanostructural materials; Uterine repair.
Copyright © 2025 The Authors. Published by Elsevier Ltd.. All rights reserved.