This study explored the vasodilatory mechanisms of the sodium-glucose cotransporter-2 inhibitor remogliflozin using femoral arteries of rabbits. Remogliflozin dilated femoral arterial rings pre-contracted with phenylephrine in a concentration-dependent manner. Pretreatment with the Ca2+-sensitive K+ channel inhibitor (paxilline), the ATP-sensitive K+ channel inhibitor (glibenclamide), or the inwardly rectifying K+ channel inhibitor (Ba2+) did not alter the vasodilatory effect. However, vasodilation was significantly reduced by pretreatment with the voltage-dependent K+ (Kv) channel inhibitor (4-AP) and with the Kv1.5 subtype inhibitor (DPO-1) but not with Kv2.1 or Kv7 subtype inhibitor. Neither endothelium removal nor the inhibition of nitric oxide production altered the vasodilatory effect of remogliflozin. However, pretreatment with the sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA) pump inhibitors thapsigargin and cyclopiazonic acid effectively reduced the remogliflozin effect, as did pretreatment with cGMP/PKG-related but not cAMP/PKA-related signaling pathway inhibitors. These results indicate that remogliflozin-mediated dilation of the femoral artery occurs via the activation of Kv channels, mainly the Kv1.5 subtype, SERCA pump, and cGMP/PKG-related signaling pathways.
Keywords: Femoral artery; Kv channel; Remogliflozin; SERCA pump; Vasodilation.
Copyright © 2025. Published by Elsevier Inc.