The endophytic fungus Serendipita indica (Si) could suppress Phoma arachidicola (Pa) and control peanut web blotch disease. The study evaluated its growth-promoting and disease-resistant effects in two peanut cultivars, Luhua11 and Baisha1016. In vitro experiments and microscopy analysis demonstrated that S. indica suppressed the growth of P. arachidicola. Additionally, scanning electron microscopy illustrated that S. indica adversely affected the pathogen's hyphae. LSi treatment showed the highest stem height (35 cm), root length (15.533 cm), shoot fresh weight (9.33 g), shoot dry weight (1.30085 g), root dry weight (0.1990 g), and chlorophyll a (1.3253) and b (1.8316), while BPa had the lowest values of these parameters. The highest MDA value was observed at 96 h for BPa with (3.14598 nmol/g), and the highest proline value was observed at 72 h for LSi-Pa with (56.42851 µmol/g). Antioxidant enzymes, catalase, peroxidase, ascorbate peroxidase, and phenylalanine ammonia-lyase, increased significantly after 48 h in cultivar L. The most significant result is observed in salicylic acid with LSi-Pa at 72 h (702.10 µg/mL), showing a consistent significant difference. RNA-seq analysis revealed more pronounced transcriptomic changes in cultivar L, with enriched pathways related to flavonoid biosynthesis and defense responses. The LSi-Pa treatment significantly upregulated gene expression at 96 h, with AhNPR1 (0.05807), AhNPR10 (0.10536), AhPAL1 (4.30831), and Ahcapx (0.22074), demonstrating a strong regulatory effect. These results demonstrate that S. indica enhances peanut plant growth and resilience against P. arachidicola, mainly through modulation of oxidative stress and immune responses.
Keywords: Disease resistance; Flavonoid biosynthesis; Peanut web blotch; Salicylic acid.
© 2025. The Author(s), under exclusive licence to Springer Nature B.V.