The Proteomic Landscape of the Coronary Accessible Heart Cell Surfaceome

Proteomics. 2025 Jan 10:e202400320. doi: 10.1002/pmic.202400320. Online ahead of print.

Abstract

Cell surface proteins (surfaceome) represent key signalling and interaction molecules for therapeutic targeting, biomarker profiling and cellular phenotyping in physiological and pathological states. Here, we employed coronary artery perfusion with membrane-impermeant biotin to label and capture the surface-accessible proteome in the neo-native (intact) heart. Using quantitative proteomics, we identified 701 heart cell surfaceome accessible by the coronary artery, including receptors, cell surface enzymes, adhesion and junctional molecules. This surfaceome comprises to 216 cardiac cell-specific surface proteins, including 29 proteins reported in cardiomyocytes (CXADR, CACNA1C), 12 in cardiac fibroblasts (ITGA8, COL3A1) and 63 in multiple cardiac cell types (ICAM1, SLC3A2, CDH2). Further, this surfaceome comprises to 53 proteins enriched in heart tissue compared to other tissues in humans and implicated in cardiac cell signalling networks involving cardiomyopathy (CDH2, DTNA, PTKP2, SNTA1, CAM, K2D/B), cardiac muscle contraction and development (ENG, SNTA1, SGCG, MYPN), calcium ion binding (SGCA, MASP1, THBS4, FBLN2, GSN) and cell metabolism (SDHA, NUDFS1, GYS1, ACO2, IDH2). This method offers a powerful tool for dissecting the molecular landscape of the coronary artery accessible heart cell surfaceome, its role in maintaining cardiac and vascular function, and potential molecular leads for studying cardiac cell interactions and systemic delivery to the neo-native heart.

Keywords: cell surface; heart; mass spectrometry; proteomics; surfaceome.