RSVP Keyboard with Inquiry Preview: mixed performance and user experience with an adaptive, multimodal typing interface combining EEG and switch input

J Neural Eng. 2025 Jan 10. doi: 10.1088/1741-2552/ada8e0. Online ahead of print.

Abstract

Objective: The RSVP Keyboard is a non-implantable, event-related potential-based brain-computer interface (BCI) system designed to support communication access for people with severe speech and physical impairments. Here we introduce Inquiry Preview, a new RSVP Keyboard interface incorporating switch input for users with some voluntary motor function, and describe its effects on typing performance and other outcomes.

Approach: Four individuals with disabilities participated in the collaborative design of possible switch input applications for the RSVP Keyboard, leading to the development of Inquiry Preview and a method of fusing switch input with language model and electroencephalography (EEG) evidence for typing. Twenty-four participants without disabilities and one potential end user with incomplete locked-in syndrome took part in two experiments investigating the effects of Inquiry Preview and two modes of switch input on typing accuracy and speed during a copy-spelling task.

Main results: For participants without disabilities, Inquiry Preview and switch input tended to worsen typing performance compared to the standard RSVP Keyboard condition, with more consistent effects across participants for speed than for accuracy. However, there was considerable variability, with some participants demonstrating improved typing performance and better user experience with Inquiry Preview and switch input. Typing performance for the potential end user was comparable to that of participants without disabilities. He typed most quickly and accurately with Inquiry Preview and switch input and gave favorable user experience ratings to those conditions, but preferred standard RSVP Keyboard.

Significance: Inquiry Preview is a novel multimodal interface for the RSVP Keyboard BCI, incorporating switch input as an additional control signal. Typing performance and user experience and preference varied widely across participants, reinforcing the need for flexible, customizable BCI systems that can adapt to individual users.

Clinicaltrials: gov Identifier: NCT04468919.

Keywords: assistive technology; augmentative and alternative communication; brain-computer interface; electroencephalography; event-related potentials; locked-in syndrome; multimodal access.

Associated data

  • ClinicalTrials.gov/NCT04468919