Introduction: Ultra-high-field magnetic resonance (MR) systems (7 T and 9.4 T) offer the ability to probe human brain metabolism with enhanced precision. Here, we present the preliminary findings from 3D MR spectroscopic imaging (MRSI) of the human brain conducted with the world's first 10.5 T whole-body MR system.
Methods: Employing a custom-built 16-channel transmit and 80-channel receive MR coil at 10.5 T, we conducted MRSI acquisitions in six healthy volunteers to map metabolic compounds in the human cerebrum in vivo. Three MRSI protocols with different matrix sizes and scan times (4.4 × 4.4 × 4.4 mm³: 10 min, 3.4 × 3.4 × 3.4 mm³: 15 min, and 2.75×2.75×2.75 mm³: 25 min) were tested. Concentric ring trajectories were utilized for time-efficient encoding of a spherical 3D k-space with ∼4 kHz spectral bandwidth. B0/B1 shimming was performed based on respective field mapping sequences and anatomical T1-weighted MRI were obtained.
Results: By combining the benefits of an ultra-high-field system with the advantages of free-induction-decay (FID-)MRSI, we present the first metabolic maps acquired at 10.5 T in the healthy human brain at both high (voxel size of 4.4³ mm³) and ultra-high (voxel size of 2.75³ mm³) isotropic spatial resolutions. Maps of 13 metabolic compounds (aspartate, choline compounds and creatine + phosphocreatine, γ-aminobutyric acid (GABA), glucose, glutamine, glutamate, glutathione, myo-inositol, scyllo-inositol, N-acetylaspartate (NAA), N-acetylaspartylglutamate (NAAG), taurine) and macromolecules were obtained individually. The spectral quality was outstanding in the parietal and occipital lobes, but lower in other brain regions such as the temporal and frontal lobes. The average total NAA (tNAA = NAA + NAAG) signal-to-noise ratio over the whole volume of interest was 12.1± 8.9 and the full width at half maximum of tNAA was 24.7± 9.6 Hz for the 2.75 × 2.75 × 2.75 mm³ resolution. The need for an increased spectral bandwidth in combination with spatio-spectral encoding imposed significant challenges on the gradient system, but the FID approach proved very robust to field inhomogeneities of ∆B0 = 45 ± 38 Hz (frequency offset ± spatial STD) and B1+ = 65 ± 11° within the MRSI volume of interest.
Discussion: These preliminary findings highlight the potential of 10.5 T MRSI as a powerful imaging tool for probing cerebral metabolism. By providing unprecedented spatial and spectral resolution, this technology could offer a unique view into the metabolic intricacies of the human brain, but further technical developments will be necessary to optimize data quality and fully leverage the capabilities of 10.5 T MRSI.
Keywords: 10.5 tesla; Cerebral metabolism; Concentric ring trajectories; MRSI; Spatio-spectral encoding; Ultra-high-field MRI.
Copyright © 2025 The Author(s). Published by Elsevier Inc. All rights reserved.