The recycling of Carbon Fibre-Reinforced Polymers (CFRPs) is becoming increasingly crucial due to the growing demand for sustainability in high-performance industries such as automotive and aerospace. This study investigates the impact of two chemical recycling techniques, chemically assisted solvolysis and plasma-enhanced solvolysis, on the morphology and properties of carbon fibres (CFs) recovered from end-of-life automotive parts. In addition, the effects of fibre sizing are explored to enhance the performance of the recycled carbon fibres (rCFs). The surface morphology of the fibres was characterised using Scanning Electron Microscopy (SEM), and their structural integrity was assessed through Thermogravimetric Analysis (TGA) and Raman spectroscopy. An automatic analysis method based on optical microscopy images was also developed to quantify filament loss during the recycling process. Mechanical testing of single fibres and yarns showed that although rCFs from both recycling methods exhibited a ~20% reduction in tensile strength compared to reference fibres, the application of sizing significantly mitigated these effects (~10% reduction). X-ray Photoelectron Spectroscopy (XPS) further confirmed the introduction of functional oxygen-containing groups on the fibre surface, which improved fibre-matrix adhesion. Overall, the results demonstrate that plasma-enhanced solvolysis was more effective at fully decomposing the resin, while the subsequent application of sizing enhanced the mechanical performance of rCFs, restoring their properties closer to those of virgin fibres.
Keywords: carbon fibre-reinforced polymers; composites; plasma-in-bubbles; recycling; sizing; solvolysis.