Carbon-fiber composites with thermoplastic matrices offer many processing and performance benefits in aerospace applications, but the long relaxation times of polymers make it difficult to predict how the structure of the matrix depends on its chemistry and how it was processed. Coarse-grained models of polymers can enable access to these long-time dynamics, but can have limited applicability outside the systems and state points that they are validated against. Here we develop and validate a minimal coarse-grained model of the aerospace thermoplastic poly(etherketoneketone) (PEKK). We use multistate iterative Boltzmann inversion to learn potentials with transferability across thermodynamic states relevant to PEKK processing. We introduce tabulated EKK angle potentials to represent the ratio of terephthalic (T) and isophthalic (I) acid precursor amounts, and validate against rheological experiments: The glass transition temperature is independent to T/I, but chain relaxation and melting temperature is. In sum we demonstrate a simple, validated model of PEKK that offers 15× performance speedups over united atom representations that enables studying thermoplastic processing-structure-property-performance relationships.
Keywords: coarse-graining; molecular dynamics; thermoplastic.