Development of a Fire-Retardant and Sound-Insulating Composite Functional Sealant

Materials (Basel). 2024 Dec 27;18(1):62. doi: 10.3390/ma18010062.

Abstract

The use of traditional sealing materials in buildings poses a significant risk of fire and noise pollution. To address these issues, we propose a novel composite functional sealant designed to enhance fire safety and sound insulation. The sealant incorporates a unique four-component filler system consisting of carbon nanotubes (CNTs) decorated with layered double hydroxides (LDHs), ammonium dihydrogen phosphate (ADP), and artificial marble waste powder (AMWP), namely CLAA. The CNTs/LDHs framework provides structural support and enhances thermal stability, while the ADP layer acts as a protective barrier and releases non-combustible gases during combustion. AMWP particles contribute to sound insulation by creating impedance mismatches. The resulting composite functional sealant exhibits improved mechanical properties. In terms of flame retardancy, it boasts the lowest peak heat release rate (PHRR) of 224.83 kW/m2 and total smoke release (TSR) of 981.14 m2/m2, achieving the V-0 classification. Furthermore, its thermal degradation characteristics reveal a notably higher carbon residue rate. Additionally, the sound insulation capability has been significantly enhanced, with an average sound insulation level of 43.48 dB. This study provides a promising solution for enhancing the fire safety and acoustic properties of building sealing materials.

Keywords: building applications; composite functional filler; sealant; sustainable materials.