SKP1 constitutes the Skp1-Cullin-F-box ubiquitin E3 ligase (SCF), which plays a role in plant growth and development and biotic and abiotic stress in ubiquitination. However, the response of the SKP1-like gene family to abiotic and biotic stresses in cotton has not been well characterized. In this study, a total of 72 SKP1-like genes with the conserved domain of SKP1 were identified in four Gossypium species. Synteny and collinearity analyses revealed that segmental duplication played a major role in the expansion of the cotton SKP1-like gene family. All SKP1-like proteins were classified into three different subfamilies via phylogenetic analysis. Furthermore, we focused on a comprehensive analysis of SKP1-like genes in G. hirsutum. The cis-acting elements in the promoter site of the GhSKP1-like genes predict their involvement in multiple hormonal and defense stress responses. The expression patterns results indicated that 16 GhSKP1-like genes were expressed in response to biotic or abiotic stresses. To further validate the role of the GhSKP1-like genes in salt stress, four GhSKP1-like genes were randomly selected for gene silencing via VIGS. The results showed that the silencing of GhSKP1-like_7A resulted in the inhibition of plant growth under salt stress, suggesting that GhSKP1-like_7A was involved in the response to salt stress. In addition, yeast two-hybrid results revealed that GhSKP1-like proteins have different abilities to interact with F-box proteins. These results provide valuable information for elucidating the evolutionary relationships of the SKP1-like gene family and aiding further studies on the function of SKP1-like genes in cotton.
Keywords: SKP1-like; expression patterns; synteny and collinearity analyses.