Effects of Maillard Reaction Durations on the Physicochemical and Emulsifying Properties of Chickpea Protein Isolate

Foods. 2025 Jan 3;14(1):117. doi: 10.3390/foods14010117.

Abstract

This study investigated the physicochemical and emulsifying properties of chickpea protein isolate (CPI)-citrus pectin (CP) conjugates formed via the Maillard reaction across varying reaction durations. CPI and CP were conjugated under controlled dry-heating conditions, and the resulting conjugates were characterized by measuring their particle size, zeta potential, solubility, thermal stability, surface hydrophobicity, and emulsifying properties. The results showed that as reaction duration increased, the particle size and zeta potential of the CPI-CP conjugates increased significantly, reaching a maximum particle size of 1311.33 nm and a zeta potential of -35.67 mV at 12 h. Moreover, the Maillard reaction improved the solubility, thermal stability, and hydrophobicity of the CPI. Glycosylation increased the emulsifying activity index (EAI) and emulsifying stability index (ESI) of the CPI to 145.33 m2/g and 174.51 min, respectively. Optimal emulsions were achieved at a protein concentration of 1.5 wt% and a 10% volume fraction of the oil phase. The Maillard reaction promoted the interfacial protein content and the thickness of the interfacial layer while decreasing the droplet size and zeta potential of the emulsion. Additionally, the emulsion prepared with CPI-CP-12 h showed outstanding long-term stability. These results demonstrate that a moderate Maillard reaction with CP effectively enhances the physicochemical and emulsifying characteristics of CPI.

Keywords: Maillard reaction; chickpea protein isolate; emulsifying properties; physicochemical characteristics.