The rise of Internet hospitals has significant issues associated with data security and governance in managing sensitive patient data. This paper discusses an alliance blockchain (i.e., a private blockchain) model for governance innovation in internet hospitals with an improved encryption methodology. We compare our proposed model, improved Rivest-Shamir-Adleman (RSA) encryption, integrated into the blockchain framework. Improved RSA achieves impressive improvements in all key metrics by increasing the throughput by 24.7% and lowering the latency by 19.8% compared to the base model. Thus, the improved model is more optimized for processing transactions related to healthcare data. Memory usage was also reduced by 14.3%. While encryption time remained pretty close, the decryption time remarkably improved by 97.5%. IoT sensors are one of the foundations for Internet hospitals that produce consistent patient data streams, such as physiological and environmental metrics. The proposed alliance blockchain model enables the secure and efficient real-time management of this sensor data. These results demonstrate the capability of alliance blockchain and cryptographic upgrades in creating safe and efficient governance frameworks for Internet hospitals.
Keywords: Internet hospitals; Rivest–Shamir–Adleman (RSA); blockchain; distributed role-based access control; electronic health records; security.