Modeling of Electric Field and Dielectrophoretic Force in a Parallel-Plate Cell Separation Device with an Electrode Lid and Analytical Formulation Using Fourier Series

Sensors (Basel). 2024 Dec 31;25(1):185. doi: 10.3390/s25010185.

Abstract

Dielectrophoresis (DEP) cell separation technology is an effective means of separating target cells which are only marginally present in a wide variety of cells. To develop highly efficient cell separation devices, detailed analysis of the nonuniform electric field's intensity distribution within the device is needed, as it affects separation performance. Here we analytically expressed the distributions of the electric field and DEP force in a parallel-plate cell separation DEP device by employing electrostatic analysis through the Fourier series method. The solution was approximated by extrapolating a novel approximate equation as a boundary condition for the potential between adjacent fingers of interdigitated electrodes and changing the underlying differential equation into a solvable form. The distributions of the potential and electric fields obtained by the analytical solution were compared with those from numerical simulations using finite element method software to verify their accuracy. As a result, it was found that the two agreed well, and the analytical solution was obtained with good accuracy. Three-dimensional fluorescence imaging analysis was performed using live non-tumorigenic human mammary (MCF10A) cells. The distribution of cell clusters adsorbed on the interdigitated electrodes was compared with the analytically obtained distribution of the DEP force, and the mechanism underlying cell adsorption on the electrode surface was discussed. Furthermore, parametric analysis using the width and spacing of these electrodes as variables revealed that spacing is crucial for determining DEP force. The results suggested that for cell separation devices using interdigitated electrodes, optimization by adjusting electrode spacing could significantly enhance device performance.

Keywords: Fourier series expansion; cell separation; dielectrophoresis; electric field analysis; microfluidic device; three-dimensional fluorescence imaging.

Grants and funding