The evolution of display technologies is rapidly transitioning from traditional screens to advanced augmented reality (AR)/virtual reality (VR) and wearable devices, where quantum dots (QDs) serve as crucial pure-color emitters. While solution processing efficiently forms QD solids, challenges emerge in subsequent stages, such as layer deposition, etching, and solvent immersion. These issues become especially pronounced when developing diverse form factors, necessitating innovative patterning methods that are both reversible and sustainable. Herein, a novel approach utilizing lipoic acid (LA) as a ligand is presented, featuring a carboxylic acid group for QD surface attachment and a reversible disulfide ring structure. Upon i-line UV exposure, the LA ligand initiates ring-opening polymerization (ROP), crosslinking the QDs and enhances their solvent resistance. This method enables precise full-color QD patterns with feature sizes as small as 3 µm and pixel densities exceeding 3788 ppi. Additionally, it supports the fabrication of stretchable QD composites using LA-derived monomers. The reversible ROP process allows for flexibility, self-healing, and QD recovery, promoting sustainability and expanding QD applications for ultra-fine patterning and on-silicon displays.
Keywords: QD nanocomposites; direct optical lithography; polymerization; quantum dots.
© 2025 The Author(s). Advanced Materials published by Wiley‐VCH GmbH.