Dominantly inherited intronic GAA repeat expansions in the fibroblast growth factor 14 gene have recently been shown to cause spinocerebellar ataxia 27B. Currently, the pathogenic threshold of (GAA)≥300 repeat units is considered highly penetrant, while (GAA)250-299 is likely pathogenic with reduced penetrance. This study investigated the frequency of the GAA repeat expansion and the phenotypic profile in a Cypriot cohort with unresolved late-onset cerebellar ataxia. We analysed this trinucleotide repeat in 155 patients with late-onset cerebellar ataxia and 227 non-neurological disease controls. The repeat locus was examined by long-range PCR followed by fragment analysis using capillary electrophoresis, agarose gel electrophoresis and automated electrophoresis. A comprehensive comparison of all three electrophoresis techniques was conducted. Additionally, bidirectional repeat-primed PCRs and Sanger sequencing were carried out to confirm the absence of any interruptions or non-GAA motifs in the expanded alleles. The (GAA)≥250 repeat expansion was present in 12 (7.7%) patients. The average age at disease onset was 60 ± 13.5 years. The earliest age of onset was observed in a patient with a (GAA)287 repeat expansion, with ataxia symptoms appearing at 25 years of age. All patients with spinocerebellar ataxia 27B displayed symptoms of gait and appendicular ataxia. Nystagmus was observed in 41.7% of the patients, while 58.3% exhibited dysarthria. Our findings indicate that spinocerebellar ataxia 27B represents the predominant aetiology of autosomal dominant cerebellar ataxia in the Cypriot population, as this is the first dominant repeat expansion ataxia type detected in this population. Given our results and existing research, we propose including fibroblast growth factor 14 GAA repeat expansion testing as a first-tier genetic diagnostic approach for patients with late-onset cerebellar ataxia.
Keywords: Cyprus; FGF14; SCA27B; autosomal dominant cerebellar ataxia; spinocerebellar ataxia 27B.
© The Author(s) 2025. Published by Oxford University Press on behalf of the Guarantors of Brain.