To deploy Electroencephalogram (EEG) based Mental Workload Recognition (MWR) systems in the real world, it is crucial to develop general models that can be applied across subjects. Previous studies have utilized domain adaptation to mitigate inter-subject discrepancies in EEG data distributions. However, they have focused on reducing global domain discrepancy, while neglecting local workload-categorical domain divergence. This degrades the workload-discriminating ability of subject-invariant features. To deal with this problem, we propose a novel joint category-wise and domain-wise alignment Domain Adaptation (cdaDA) algorithm, using bi-classifier learning and domain discriminative adversarial learning. The bi-classifier learning approach is adopted to address the similarities and differences between categories, helping to align EEG data within the same mental workload categories. Additionally, the domain discriminative adversarial learning technique is adopted to consider global domain information by minimizing global domain discrepancy. By integrating both local category information and global domain information, the cdaDA model performs a coarse-to-fine alignment and achieves promising cross-subject MWR results.
Keywords: Bi-classifier domain adaptation; Brain-computer interface; Cross-subject; Electroencephalogram (EEG); Mental states recognition.
© The Author(s), under exclusive licence to Springer Nature B.V. 2025. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.