Background: Ovarian cancer is difficult to detect in its early stages, and it has a high potential for invasion and metastasis, along with a high rate of recurrence. These factors contribute to the poor prognosis and reduced survival times for patients with this disease. The effectiveness of conventional chemoradiotherapy remains limited. Nano-particles, as a novel drug delivery system, have significant potential for improving therapeutic efficacy and overcoming these challenges.
Methods: According to the high expression level of matrix metalloproteinase-2 (MMP-2) in the tumor microenvironment, MMP-2 responsive nano-particles (PVGLIG-MTX-D/T-NMs) containing docetaxel and triptolide were prepared by the thin-film dispersion method. The synergistic effect between docetaxel and triptolide was systematically investigated, the ratio of the two drugs was optimized, and the physicochemical properties of the nano-particles and their ability to inhibit ovarian cancer cell growth and metastasis were evaluated in vitro and in vivo.
Results: PVGLIG-MTX-D/T-NMs enhanced the targeting, stability, and bioavailability of the drug, while reducing the dose and toxicity. In addition, by regulating the expression levels of E-Cadherin, N-Cadherin, matrix metalloproteinases (MMPs), hypoxia-inducible factor 1-alpha (HIF-1α), and vascular endothelial growth factor (VEGF), it exhibited an inhibitory effect on epithelial-mesenchymal transformation (EMT) and tumor cell angiogenesis, and effectively inhibited the invasion and metastasis of ovarian cancer cells.
Conclusion: PVGLIG-MTX-D/T-NMs achieved passive targeting of tumor sites by enhancing permeability and retention (EPR) effects. Subsequently, the uptake of the drug by tumor cells was enhanced by MMP-2 responsiveness and the modification of methotrexate targeting ligands. By regulating the expression levels of invasion- and metastasis-related proteins in tumor tissues, the nano-particles affected the EMT process, inhibited tumor angiogenesis, and suppressed the malignant potential of invasion and metastasis in ovarian cancer. These findings provided a new direction for further exploration of tumor-targeted therapy.
Keywords: angiogenesis; docetaxel; epithelial mesenchymal transition; nano-drug delivery system; triptolide; tumor microenvironment.
© 2025 Liu et al.