Isolation and Identification of Mercury-Dissolved Organic Matter Complexes in Mercury-Humic Acid Suspensions

Rapid Commun Mass Spectrom. 2025 Apr 30;39(8):e9986. doi: 10.1002/rcm.9986.

Abstract

Rationale: The complexation with dissolved organic matter (DOM) is a pivotal factor influencing transformations, transport, and bioavailability of mercury (Hg) in aquatic environments. However, identifying these complexes poses a significant challenge because of their low concentrations and the presence of coexisting ions.

Methods: In this study, mercury-dissolved organic matter (Hg-DOM) complexes were isolated through solid-phase extraction (SPE) from Hg-humic acid suspensions, and complexes were putatively identified using ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS).

Results: Dissolved organic carbon (DOC) and total Hg analysis before and after SPE showed an increase in DOC:Hg ratio. The DOC:Hg ratio was lower in extracts from cartridges with silica structure bonded with hydrocarbon chains (C18) than priority pollutant (PPL) cartridges at circumneutral pH, indicating that C18 was more effective at extracting DOM complexed Hg. These results were confirmed with FTICR-MS analysis, where two Hg-DOM complexes were putatively identified from PPL extracts as opposed to eight from C18 (Winnow score > 75%). In addition, C8H13HgN2O2S, a molecular formula with a m/z ratio of 403.04, was identified across three separate extractions using a C18 cartridge, suggesting that the complexes were preserved during extraction and, presumably, electrospray ionization.

Conclusions: The results highlight the effectiveness of the methodology developed in this study-SPE coupled with FTICR-MS for isolating and identifying Hg-DOM complexes. This approach allows for the exploration of the elemental and structural composition of Hg-DOM complexes, which affects Hg speciation, bioavailability, and transformations in aquatic ecosystems.

Synopsis: A methodology was developed to identify Hg-DOM complexes at low concentrations to gain insight into mercury bioavailability, transformations, and transport in the environment.

Keywords: Hg‐DOM complexes; dissolved organic matter; high‐resolution mass spectrometry; mercury; solid‐phase extraction.